

Vef: A set is a collection of <u>elements</u> (or objects). If x is an element of a Set S, then we write XES. read: "xis in s" If x is not an element of a set S, then we write <u>x & S</u>. read; "x is not in S" $E_{X'}$ S = $\{0, 0, -1\}$ OES -) NES 0 0 -1 ES $2 \notin S$ -5 ¢ S

Note: There is no ordering on the elements of a set. Thus, $\{0, 10, -1\} = \{10, -1, 0\}$ for example. Also, sets cannet have duplicate entries. For example you can't have {1,0,1} as a set.

$$E \times :$$

$$sef of$$

$$N = \{1, 2, 3, 4, 5, 6, 7, \dots\} + natural$$

$$numbers$$

$$Z = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} + sef$$

$$of$$
integers

 $R = \{x \mid x \text{ has a decimal expansion}\}$ $\begin{aligned} f \\ set of \\ veal \\ numbers \end{aligned} = \begin{cases} 2 & -5 \\ 7 & 2 \\ 4 & 4 \\ 10 & -2.5 \\ 0 & -2.5 \\ 0 & -3.14159 \end{aligned}$ 3,14159,...

Def: Let A and B be sets. We say that B is a subset of A, and write B = A, if every element of B is also an element of A. Some people Write BCA for subset

$$\frac{E_X}{A} = \{12n \mid n \in \mathbb{Z}\}$$
$$B = \{3k \mid k \in \mathbb{Z}\}$$

Then,

$$A = \{ \dots, 12(-3), 12(-2), 12(-1), 12(0), \dots \}$$

$$12(1), 12(2), 12(3), \dots \}$$

$$= \{ \dots, -36, -24, -12, 0, 12, 24, 36, \dots \}$$

and

$$B = \{ \dots, 3(-3), 3(-2), 3(-1), 3(0), 3(1), 3(2), 3(3), \dots \}$$

 $= \{ \dots, -9, -6, -3, 0, 3, 6, 9, \dots \}$.
It seems that $A \in B$.
Let's prove it formally.
 \downarrow

Technique: To show that A = B one way is to pick some XEA and then derive that $x \in B$. Ex: Show that {12n |n∈7∠} = {3k | k∈Z} Let x e { l2n l n e Z J. proof: Then, X=12n where nEZ. Hence, x = 3(4n). Let k=4n. A 4nez because Su, x = 3k. Thus, x e {3k kez}. Therefore, ZIZn I ne ZJ = Z3k | ke Zj

Def: Let A and B be sets. The union of A and B is AUB= {x | xEA or XEB} AMAINS The intersection of A and B is ANB= ZX XEA and XEB ANB

 F_X $A = \{\sqrt{2}, 5, 9, 20, \frac{1}{3}, 2\}$ $B = \frac{5}{2} - 16, 9, \frac{1}{3}, 4$ $AVB = 3\sqrt{2}, 5, 9, 20, \frac{1}{3}, 2, -16, 4$ extra B A stuff stuff

 $ANB = 29, \frac{1}{3}$

Method to show that
$$A=B$$

when A and B are sets
(1) Show that $A \subseteq B$
(2) show that $B \subseteq A$

So, Zk=30. Thus, 3n is even. (because 3n is Z times an integer) We can't have a being odd since We can't have a being odd since then 3n would be odd. (odd * odd = odd)

So n is even. Thus, n = 2m where m is an integer. $S_{0}, x = 3n = 3(2m) = 6m$ So, XE Z62 [LEZ]. Thus, $ANB \leq \frac{2}{6} \left| l \in \mathbb{Z} \right|$ 2: Now let's show ZGL/LEZISAAB. Let XE 262 | le ZZ. Then X = Gj where $j \in \mathbb{Z}$. Thus, $X = Z(3j) \in A$. And, $\chi = 3(zj) \in B$ Su, XEANB. Thus, ZGQ (LEZ] SANB.

Def: Let A and B be sets.
We say that A and B are disjoint
$$if A \cap B = \phi$$
 where ϕ is the
empty set.

Ex:
$$A = \{1, 2\}$$
 $A \cap B = \emptyset$
 $B = \{3, 4\}$ So, A and B
are disjoint

Def: Let A and B be sets. The difference of A and B is $A-B = \{ x \mid x \in A \text{ and } x \notin B \}$ В read: "all x where x is in A and x is B

not in B" Notation: Some people write A\B For A-B.

Ex: $A = \{2, 2, 3, 4, 5, 6, 7\}$ $B = \{ \{ \{ \{ \{ \} \}, \{ \} \}, \{ \}, \{ \} \}, \{ \{ \}, \{ \}, \{ \{ \} \}, \{ \{ \}, \{ \}, \{ \}, \{ \}, \{ \}, \{ \}, \}, \{ \{ \}, \}, \{ \{ \}, \}, \{ \{ \}, \{ \}, \}$ A - B = 33, 4, 6, 7jB

$$A - \{10, 11, 20\} = A$$

$$\uparrow$$

$$A = \{1, 2, 3, 4, 5, 6, 7\}$$

$$A - A = \oint A$$

$$eft$$

HW problem A, B, C be sets. let Prove: If $A \subseteq B$, then $A - C \subseteq B - C$ Proof: Suppose that A = B. We want to show that A-CEB-C. Let XEA-C. Then XEA and XEC. Since XEA and AEB, we know that XEB. Thus, XEB and X&C. Hence XEB-C. Therefore, A-C = B-C

Def: Let A be a set where
U is a Universal Set (So,
$$A \subseteq U$$
)
U is a Universal Set (So, $A \subseteq U$)
Then the complement of A with
U
respect to U is
 $A^{c} = U - A$
 $= \{ \ge x \} \ x \in U \text{ and } x \notin A \}.$

Ex: $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ $A = \{2, 4, 6, 8, 10, 12\}$ $A^{C} = U - A = \{2, 3, 5, 7, 9, 11\}$

Theorem: (de Morgan's laws) Let U be a universal set. A and B be subsets of U. Let $(A \cup B)^{c} = A^{c} \cap B^{c}$ $(A \cap B)^{c} = A^{c} \cup B^{c}$ Then:

proof:
Let's prove (1). You can try (2).
E Let's show
$$(AUB)^{c} \subseteq A^{c} \cap B^{c}$$
.
Let $x \in (AUB)^{c}$.
Then, $x \in U$
and $x \notin AUB$.
So, $x \in U$ and
 $x \in AUB''$ is not true.
 $x \in AUB''$ is not true.
 $x \in AUB''$ is not true.
So, $x \in U$ and $x \notin A$ or $x \in B''$ is not
true.
So, $x \in V$ and $x \notin A$ and $x \notin B$.
 $Z = SO$.
Thus, $x \in A^{c}$
and $x \notin B^{c}$.
Thus, $x \in A^{c} \cap B^{c}$.
Therefore, $(AUB)^{c} \subseteq A^{c} \cap B^{c}$.

2: Now let's show
$$A^{c} \cap B^{c} \leq (A \cup B)^{c}$$
.
Let $y \in A^{c} \cap B^{c}$.
So, $y \in A^{c}$ and $y \notin B^{c}$.
So, $y \in U$ and $y \notin A$ and $y \notin B^{c}$.
Thus, $y \in U$ and $y \notin A \cup B$
So, $y \in (A \cup B)^{c}$.
Thus, $A^{c} \cap B^{c} \leq (A \cup B)^{c}$.
By (E) and (E) we have $(A \cup B)^{c} = A^{c} \cap B^{c}$.
 $M = M = M = M = M = M = M = M$

Another way to prove:

$$x \in (AUB)^{C}$$

iff $x \in U$ and $x \notin AUB$
iff $x \in U$ and $x \notin A and x \notin B$
iff $x \in U$ and $x \notin A$ and $x \notin B$

Vef: Let A and B be sets. The Cartesian product of A and B is $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$ Note: (a,b) is called an ordered pair. Order matters for (a,b) People have proposed various set definitions for (a,b). For example one is (a,b) = 3a, 5a, b?

$$E_{X}: A = \{1, 5, 9\}$$

$$B = \{4, 9\}$$

$$A \times B = \{(1, 4), (1, 9), (5, 4), (5, 9), (9, 9), (9, 9), (9, 9), (9, 9)\}$$

$$B \times B = \{(4, 4), (4, 9), (9, 4), (9, 9)\}$$

$$Note: In general, if S and T$$

$$Are finite sets, then
$$|S \times T| = |S| \cdot |T|$$

$$Means size of of S \times T$$

$$S = T$$$$

Def: Let A be a set. We define the power set of A to be the set OF all subsets of A, that is

 $\mathcal{P}(A) = \{ \{ B \mid B \leq A \} \}$ the set of all power Set of A B where BEA

 $E_X: A = 31, 23$ Subsets of A empty set is a subset of every 311 set $\phi = \xi \xi$ 525 SIDE COMMENTARY 31,2} ST means: ∀x (If x ∈ S, then x ∈ T) ↓ ⊆T means: $(\forall x)(If x \in \phi, \text{then } x \in T)$ P(A) = (A)Q $= 2^{2} = 2^{|A|}$ $\mathcal{P}(A) = \{ \phi, \{1\}, \{2\}, \{1, 2\} \}$

EX: $B = \{5, 2, 1\}$ $\{5,2\},\{2,1\},$ {5,1}, {5,2,1} Note: $|P(B)| = 8 = 2^3 = 2^{|B|}$ Theorem: If S is finite, then $|P(S)| = 2^{|S|}$

Theorem: Let A and B be sets. Then, A=B if and only if P(A) = P(B). proof: (ED) It's clear that if A = B, then P(A) = P(B). (27) Now we must prove ITF P(A) = P(B), then A = B'. Suppose P(A) = P(B).

To show that A=B we

Thus, $\{b\} \leq A$. Hence bEA.

 $S_{0}, B \leq A. \blacktriangleleft$

By claim 1 and 2 we know A=B.

Def: When every element of a set A is itself a Set then we call A a family or collection of sets.

Ex: P(A) is a family of sets.

non-emply Vet: Let A be a family of sets. Define the union over A to be US={x|xES for some SEA} = {x | there exists some ? SEA where xES SEA Ex: $A = \{S_{1}, S_{2}, S_{3}, S_{4}\}$ shaded í S SEA

Define the intersection over A to be ∩s={x| x∈Sfor all SEA} SEA $\mathcal{A} = \{S_1, S_2, S_3\}$ Shaded blue is SEA

$$E_{X:} = \left\{ \left\{ 2, 4, 6, 8 \right\}, \left\{ 1, 3, 2 \right\}, \left\{ 2, 7, 6 \right\} \right\} \right\}$$

$$S_{1} = \left\{ 2, 7, 6 \right\}$$

$$S_{2} = \left\{ 2, 7, 6 \right\}$$

$$S_{2} = \left\{ 2, 7, 6, 7, 8 \right\}$$

$$C_{2} = \left\{ 1, 2, 3, 4, 6, 7, 8 \right\}$$

$$C_{2} = \left\{ 2 \right\}$$

Ex: $M = \{2, 2, 3, 4, ...\}$ \mathbb{Z}_{2} B= { Ene Z Inisk} keN $= \{ S_{k} | k \in \mathbb{N} \} \}$ = $\{ S_{1}, S_{2}, S_{3}, S_{4}, \dots \}$ and $S_k = \{ \{ n \in \mathbb{Z} \mid |n| \le k \}$ $S_{1} = \{ N \in \mathbb{Z} \mid | N \mid \leq | \} = \{ -1, 0, 1 \}$ $S_2 = \{n \in \mathbb{Z} \mid |n| \le 2\} = \{-2, -1, 0, 1, 2\}$ $S_3 = \{2 - 3, -2, -1, 0, 1, 2, 3\}$

 $S_{4} = \{2 - 4, -3, -2, -1, 0, 1, 2, 3, 4\}$ And so on ... is another way SK $\left(\right) S$ to write it k=1 SEB \mathcal{O} is another way $\sum_{k=1}^{N}$ $\bigcap S = \{-1, 0, 1\}$ to write it SEB

Pef: Let 1 be a non-empty set. Suppose for each dEI there is a corresponding set A. The tamily A= {Ax | XEI } is called an indexed family of sets. The set I is called the index set. IF de I, then d is called the index of Ax.

Ex: Previously we had B= 2 Sk keNs Here B is an indexed family of sets, N is the index set. $\Im_{\alpha=3}$ is the index of S_{3}

Def: Let I be a non-empty set. Let A= {A_| ~ EI} be an indexed family of sets. Define the union over A UAz = {X | there exists XEI} XEI Aa= {x | x e Aa for } all x e I } Ex: In our previous example B=ZSK[KEN] we would write $US_{k} = Z$ and $\Pi S_{k} = \frac{2}{2} - 1, 0, 1$ REN

(Ex.) Let's make sense of $U(\alpha, \alpha + 1)$ and $A(\alpha, \alpha + 1)$ $\alpha \in \mathbb{Z}$ de72 Where (d, d+1) means the interval in the real numbers IR) IK T = Z $A_{\lambda} = (\lambda, \chi + 1)$ A= {Ax | x EZ}

Theorem: Let A= {A_ | XEI} be an indexed family of sets. Let doEI be a fixed element. Then: $\begin{array}{c}
\textcircled{O} \\ A_{x_{0}} \\ = \\ & & & \\ &$ proof: 1) Pick some XEAX. Then there exists XEI (namely) Where XEAX

Thus, XEUAZ={Y | there exists] XEI AZ={Y | LEI with] YEAZ

2) You try.

